Protocol to amplify T-DNA Flanking Sequence Tags (FST) from rice

Martine Bès, Christophe Sallaud, Emmanuelle Bourgeois, Pietro Piffanelli, Christophe Périn and E. Guiderdoni (adapted to rice from Devic et al., 1997 and Balzergue et al., 2001)
contact: Martine Bès (bes@cirad.fr) or Pietro Piffanelli (Piffanelli@cirad.fr)

Starting material: DNA isolated from rice young leaves using the QIAGEN Dneasy 96 plant Kit - Ref. 69181 - this extraction procedure yields $200 \mu 1$ of genomic DNA at a concentration of approx. $33 \mathrm{ng} / \mu \mathrm{l}$.
The protocol is divided in the following four steps:

I) Restriction-ligation (RL)

Rice genomic DNA is cut with a frequent cutter restriction enzyme giving blunt ends (DraI or SspI) and the obtained genomic fragments are ligated to a suitable adaptor.

Note: the same protocol can be applied to other restriction enzymes e.g. EcoRV, NaeI, ECl136

Preparation of adaptor stock ($\mathbf{2 5} \boldsymbol{\mu} \mathbf{M}$):

This step of hybridisation of the two primers constituting the adaptor is carried out just before setting up the restriction-ligation reaction.

Adpr1 $(100 \mu \mathrm{M})$	$8,3 \mu \mathrm{l}$
Adpr2 $(100 \mu \mathrm{M})$	$8,3 \mu 1$
Buffer4 10X (Gibco BRL)	$3,3 \mu 1$
$\mathrm{H}_{2} \mathrm{O}$	$13,3 \mu 1$
TOTAL	$-33,2 \mu \mathrm{l}$

PCR conditions:

$$
\begin{aligned}
& 95^{\circ} \mathrm{C}, 5 \mathrm{~min} \\
& 28^{\circ} \mathrm{C}, 5 \mathrm{~min}
\end{aligned}
$$

The adaptor is kept on ice until utilisation. For one 96 -well plate $33 \mu \mathrm{l}$ of adaptor are needed.

Restriction-Ligation (RL) reaction

Rice genomic DNA is cut with DraI or SspI and ligated to the adaptor in the same reaction. This step is carried out in 96 -well plates

Note: the use of the $S s t 2$ enzyme in the restriction-ligation, which cuts in the binary vector next to the T-DNA left border, limits the amplification of integrated binary vector.

RL DraI or SSPI	Quantity/well	Volume/well
DNA $(33 \mathrm{ng} / \mu \mathrm{l})$	$82,5 \mathrm{ng}$	$2,5 \mu \mathrm{l}$
DraI or SspI $(10 \mathrm{U} / \mu \mathrm{l})$	1 U	$0.1 \mu \mathrm{l}$
Sst2 $(10 \mathrm{U} / \mu \mathrm{l})$	$0,5 \mathrm{U}$	$0,05 \mu \mathrm{l}$
T4 Ligase $(20 \mathrm{U} / \mu \mathrm{l})$	$0,24 \mathrm{U}$	$0.012 \mu \mathrm{l}$
T4 ligase buffer10X	1 X	$1 \mu \mathrm{l}$
Adaptator $(4 \mu \mathrm{M})$	375 nM	$0.15 \mu \mathrm{l}$
$\mathrm{H}_{2} \mathrm{O}$	to final10	$6,188 \mu \mathrm{l}$

The RL samples are incubated at $25^{\circ} \mathrm{C}$ overnight (16 hours)
Following incubation the RL samples are diluted $-40 \mu \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ are added to each well The RL samples can be stored at $-20^{\circ} \mathrm{C}$ until their utilisation.

II) PCR1

This step enables to amplify genomic DNA fragments between the adaptor and the T-DNA. This step is carried out in 96 -well plates

	Quantity/well	Volume/well
Diluted RL reaction	$16,5 \mathrm{ng}$	$10 \mu \mathrm{l}$
Taq Buffer10X	1 X	$2 \mu \mathrm{l}$
dNTPs $(1,855 \mathrm{mM}$ each $)$	$75 \mu \mathrm{M}$	$0.8 \mu \mathrm{l}$
AP1 primer $100 \mu \mathrm{M}$	$0,2 \mu \mathrm{M}$	$0,04 \mu \mathrm{l}$
Hyg7 primer $100 \mu \mathrm{M}$	$0,2 \mu \mathrm{M}$	$0,04 \mu \mathrm{l}$
Taq $(2 \mathrm{U} / \mu \mathrm{l})$	2 U	$1 \mu \mathrm{l}$
$\mathrm{H}_{2} \mathrm{O}$	to final 20 ul	$6,12 \mu \mathrm{l}$

PCR1 program

$94^{\circ} \mathrm{C}$	3 mn	1 cycle
$92^{\circ} \mathrm{C}$	30 sec	
$67^{\circ} \mathrm{C}$	45 sec	30 cycles
$72^{\circ} \mathrm{C}$	2 mn 30 sec	
$72^{\circ} \mathrm{C}$	5 mn	
$15^{\circ} \mathrm{C}$	storage	1 cycle

The PCR1 reaction is diluted 50 times before proceeding to the next step.
To a volume of $2 \mu \mathrm{l}$ of PCR 1 reaction, $98 \mu \mathrm{l}$ of $\mathrm{H}_{2} \mathrm{O}$ are added

II) PCR2:

This step increases the specificity of amplification of rice genomic DNA between the adaptor and the T-DNA.

	Quantity/well	Volume/well	
Diluted PCR1	$2 \mu \mathrm{l}$	$2 \mu \mathrm{l}$	
Taq buffer 10X	1 X	$10 \mu \mathrm{l}$	
dNTPs $(1,875 \mathrm{mM}$ each $)$	$75 \mu \mathrm{M}$	$4 \mu \mathrm{l}$	
AP2 primer $(100 \mu \mathrm{M})$	$0.2 \mu \mathrm{M}$	$0,2 \mu \mathrm{l}$	
Hyg8 primer $(100 \mu \mathrm{M})$	$0,2 \mu \mathrm{M}$	$0,2 \mu \mathrm{l}$	
Taq $(2 \mathrm{U} / \mu \mathrm{l})$	4 U	$2 \mu \mathrm{l}$	
$\mathrm{H}_{2} \mathrm{O}$	to final $100 \mu \mathrm{l}$	$81,6 \mu \mathrm{l}$	

PCR2 program

$94^{\circ} \mathrm{C}$	3 mn	1 cycle
$92^{\circ} \mathrm{C}$	30 sec	
$67^{\circ} \mathrm{C}$	45 sec	35 cycles
$72^{\circ} \mathrm{C}$	2 mn 30 sec	
$72^{\circ} \mathrm{C}$	5 mn	
$15^{\circ} \mathrm{C}$	storage	1 cycle

IV) PCR2 analysis and sequencing

$3 \mu \mathrm{l}$ of PCR2 reaction are analysed by gel eletrophoresis on an agarose gel 1,2\%. The obtained PCR bands are directly sequenced using the CAMB6 primer.

V) Solutions and primers

1) Taq buffer 10X
```
670 mM Tris-HCl ( pH 8.8 )
\(160 \mathrm{mM}(\mathrm{NH} 4)_{2} \mathrm{SO}_{4}\)
\(0.1 \%\) Tween 20
17 mM MgCl 2
pH to 8,8 with HCl
sterilise by filtration \((0.2 \mu \mathrm{~m})\)
```

2) Primer sequences

ADPR1 5' CTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGGAGGT 3'
ADPR2 5'P ACCTCCCC 3' NH2
AP1 5' GGATCCTAATACGACTCACTATAGGGC 3'
AP2 5' CTATAGGGCTCGAGCGGC 3'
Hyg7 5' GTCGATGCGACGCAATCGTCCGATC 3'
Hyg8 5' GTCTGGACCGATGGCTGTGTAGAAG 3'
CAMB6 5' CGCTCATGTGTTGAGCATAT 3'

